
Interactive Reward Tuning:
Interactive Visualization for Preference Elicitation

Danqing Shi1, Shibei Zhu1, Tino Weinkauf2, Antti Oulasvirta1

Abstract— In reinforcement learning, tuning reward weights
in the reward function is necessary to align behavior with user
preferences. However, current approaches, which use pairwise
comparisons for preference elicitation, are inefficient, because
they miss much of the human ability to explore and judge
groups of candidate solutions. The paper presents a novel
visualization-based approach that better exploits the user’s
ability to quickly recognize interesting directions for reward
tuning. It breaks down the tuning problem by using the visual
information-seeking principle: overview first, zoom and filter,
then details-on-demand. Following this principle, we built a
visualization system comprising two interactively linked views:
1) an embedding view showing a contextual overview of all
sampled behaviors and 2) a sample view displaying selected
behaviors and visualizations of the detailed time-series data. A
user can efficiently explore large sets of samples by iterating
between these two views. The paper demonstrates that the
proposed approach is capable of tuning rewards for challenging
behaviors. The simulation-based evaluation shows that the
system can reach optimal solutions with fewer queries relative
to baselines.

I. INTRODUCTION

Reward design [1] is a fundamental process in reinforce-
ment learning (RL) that has a direct impact on the behavior
of the RL agent. Designing a satisfactory reward function to
guide the agent’s learning process involves several steps such
as reward term specification, reward shaping, and reward
tuning. Designing a reward function can be challenging since
expressing the task’s nature often requires domain knowledge
and lots of experimentation. A reward function that seems
correct to the reward’s designer might lead to unexpected
behaviors by the RL agent, such as failure at the task [2] or
myopic behavior with partial completion of the task when
it involves a long task horizon [3]. While reward terms
can be easily specified via domain knowledge, designing a
combination that is perfect for reaching the desired behavior
remains challenging. The agent might exhibit unstable be-
havior upon even tiny changes in reward terms [2], [4], yet
there have been few studies of the intricate relations between
multiple objectives and the resulting behavior [5]. Despite the
critical role of the reward function, its designing process is
often done by trial and error [6], where an expert proposes
a reward function, inspects the resulting agent’s behavior,
proposes changes, and re-iterates the process.

In this paper, we tackle the problem of reward tun-
ing [7] from humans’ feedback, which involves seeking a

1Danqing Shi, Shibei Zhu and Antti Oulasvirta are with Aalto University,
Finland firstname.lastname@aalto.fi

2Tino Weinkauf is with KTH Royal Institute of Technology, Sweden
weinkauf@kth.se

reward function that produces user-desirable behavior by
using human feedback. This process is commonly framed
as preference elicitation. Existing preference-based methods
that learn from human feedback [8]–[10] engage users in
a tedious feedback process with pairwise comparisons or
ranking, which can be time-consuming (Fig. 1-a). While
these methods have shown success, they are often impractical
for real-world applications. Take the example of the most
popular method: pairwise comparison. It inherits limitations
in dealing with user preferences that can be improved:

• Users have limited control over the queries presented to
them. Even though active query strategies can minimize
the number of preference queries [11], they still require
users to assess uninteresting query instances repeatedly.

• The interface for pairwise-comparison queries is inef-
fective in that it only displays instances side by side,
without giving users any other contextual information.

• Pairwise comparison misses out on an opportunity for
preference elicitation to factor in user expertise, which
could accelerate the process.

To solve the problems mentioned above, we introduce
an approach for interactive visualization-based feedback that
supports users’ decision-making. Interactive interfaces have
been proven to improve the user’s ability to explore the de-
sign space [12]. To the best of our knowledge, our system is
the first to support an inspection mechanism with information
for visual analytics, thus allowing better user feedback.

We illustrate the concept of our method in Fig. 1-b, which
follows the visual-information-seeking principle: overview
first, zoom and filter, then details-on-demand [13]. To make it
easier to explore policies, the system projects the trajectories
generated from the policies into an embedding space. Users
can freely explore this space and select specific behaviors
of interest. Once selected, the system provides a detailed
sample view that displays the selected behaviors and relevant
analysis data. Users can analyze this information in detail and
decide which behavior to inspect next. With our system, we
alleviate the limitations mentioned above leading to:

• Users can comprehend the behavior space by examining
groups of sampled behaviors. This allows users to
develop a good understanding of the behavior after a
few observations.

• Given the interactive inspection mechanism, users can
influence the data points to be presented by interacting
with the system. Unlike the current approaches that rely
on active learning methods for query selection, instead
of asking for preferences regarding the comparison of

Fig. 1: We present an interactive reward tuning approach to better utilize human experts’ knowledge and abilities in reward
tuning. (a) Previous methods that use pairwise comparisons for preference elicitation can be inefficient. Users must perform
numerous comparisons to find the optimum. (b) To address this issue, our approach uses a visualization system to decompose
the preference elicitation via two linked views: an Embedding View and a Sample View. The Embedding View visualizes the
distribution of behaviors in a two-dimensional space for efficient clustering and querying, while the Sample View displays
both selected behaviors and the Markov decision process (MDP) time series that can support the visual analysis. The system
enables users to iteratively switch and analyze from two views, efficiently tuning rewards with fewer queries. Using rational
designer models, we prove that interactive reward tuning is more efficient than pairwise comparison.

samples selected via active learning, users can actively
direct the exploration within the sample space and focus
on the most promising area.

• The visual information and the data analysis of the se-
lected behaviors can support the user’s decision-making
process leading to faster convergence of the desired
policies with less number of queries.

We conduct a simulation-based study to evaluate and
compare the performance of our approach with the baselines
under two user models, including the noisy model and
Boltzmann rationality [14], [15]. The results indicate that our
approach requires 15 queries to achieve an average utility of
0.95 and 0.97 in two user models, outperforming the standard
pairwise comparison by 2.6% and 7.5%.

The main contributions of this paper are:

• A novel interactive visualization system to improve the
efficiency of reward tuning;

• A preference elicitation workflow that integrates the
visualization system to train a satisfactory policy;

• A simulation-based evaluation through modeling ratio-
nal users demonstrates the efficiency of our approach
relative to baseline methods.

II. BACKGROUND

A. Markov Decision Process

In reinforcement learning, a sequential decision-making
process can be represented by a Markov decision process
(MDP) [6], defined as a tuple ⟨S,A,P, R, γ⟩ where S is the
state space and A the action space; P : S×A×S is the state-
transition possibility of a given action. R : S × A → R is
the reward function, and γ ∈ [0, 1] is the discount factor.
The optimal policy results from optimizing the expected

state–action value function π∗(a|s) = maxπ Q
π(s, a), where

Qπ(s, a) = Eπ [
∑∞

k=0 γ
tRt+k+1|st = s, at = a].

B. Reward Tuning Problem

The goal of reward tuning is to adjust a reward function
to achieve the user-desired policy for the agent. The reward
function is often assumed to be a linear combination of
various state and action features [8]:

r(s, a) =

d∑
i=0

wiϕi(s, a) = w⊤Φ(s, a) (1)

where Φ(·) is the feature vector and w is the weight vector,
w ∈ Rd, with ∥w∥2 ≤ 1. The process of reward tuning
consists of adjusting the w value in the expression.

C. Reward Tuning via Preference Elicitation

Reward tuning via preference elicitation is the process of
learning a user’s preferences from among a set of options
by gathering user feedback [9]. Typically, users are asked
to express their preferences using relative feedback since
providing this in the form of statements such as “I prefer
A over B” [16] is easy. Therefore, preference elicitation
is usually based on pairwise comparison, for which a user
query is defined as Q = {(τi, τj ; o)}, where τi, τj are
the state–action trajectories that result from a policy and
o = {≺,≻,∼} is the preference-order operator specifying
the order relationship between the two trajectories. Given
the estimated expected return R̂ for the choice options τi,
the preference order is commonly defined thus:

p(τi ≻ τj |w) = I(|R̂(τi|w)− R̂(τj |w)| > ϵ)

p(τi ≺ τj |w) = I(|R̂(τj |w)− R̂(τi|w)| > ϵ)

p(τi ∼ τj |w) = I(|R̂(τi|w)− R̂(τj |w)| ≤ ϵ)

(2)

Fig. 2: The user interface of the visualization system presents two views: the Embedding View (1) and Sample View (2).
These mutually linked views support exploring the agent’s behavior space in a controlled manner. The screenshots illustrate a
user tuning the reward for the agent’s backflip. In the Embedding View, a scatterplot lets the user observe the distribution of
the behaviors generated and inspect a cluster by brushing the points (a). Based on the selection, a corresponding distribution
of reward weights is displayed for the parallel coordinates (b). Clicking the “Analyze” button displays behavior videos in the
Sample View (c). In addition, the system presents detail-level observation, action, and reward data through MDP time-series
charts (d). The user can analyze the behaviors and use the filter feature at the top to perform further inspection.

where I is the indicator function and ϵ is a threshold value
that determines the random noise level. The value of ϵ is
directly affected by the cognitive capability of the human
users. That is, given the current choice set of the query,
the human’s internal evaluation of the expected return R(·)
over the choices is subject to some level of noise. In
addition, while the optimal policy is assumed to entail always
maximizing the true reward function, human users are not
always optimal. To reflect this, the user’s decision can be
modeled via a Boltzmann rational agent [14], [15]:

p(πθ(a|s,w)) =
expβQπ(s, a|w)∑

b∈A exp(βQπ(s, b|w))
(3)

where β ∈ [0,∞) defines the level of rationality.

D. Related Works

Instead of learning from users’ demonstrations [17], [18],
existing methods rely on querying users for their preferences
between trajectories as Eq. 2 [10], [16], [19]. However, these
preference queries are not very informative, since they only
provide information relative to one other trajectory [9]. To
address this issue, active preference learning methods have
been proposed, which generate the most informative query
at each step [11], [16]. These methods may still require
many unnecessary queries when dealing with complex and

high-dimensional behavior spaces. Unlike these methods, this
paper proposes a new visual analytics approach to ease the
labelling effort of the users and avoid a repetitive query-
answer process.

III. VISUAL ANALYTICS FOR REWARD TUNING

This section introduces the design overview of the ap-
proach, and then presents the user interface of the visualiza-
tion system for interactive reward tuning. Also, we describe
how to incorporate this system into operations alongside the
workflow for preference elicitation. We demonstrate a use
case in the Mujoco environment.

A. Design Overview

The design of the visualization system follows the visual-
information-seeking principle [13]. To improve the efficiency
of the user queries, this system gives users the freedom to
dictate the direction of exploration and thus the search di-
rection. The system has two crucial characteristics related to
this: 1) it provides an overview of the policies’ behaviors as
contextual information, and 2) it incorporates visual analytics
features to support the user’s decision-making process.

The design concept is illustrated in Fig. 1-b. From a user
point-of-view, it is an interactive user interface that consists
of two interactively linked views: an Embedding View and

Fig. 3: When selecting a single behavior, the user can analyze the MDP time-series data in a line chart (a). Brushing on the
line chart initiates selecting a range of timesteps and extracting the keyframes (b). Each keyframe comes with bar charts
displaying the corresponding actions and rewards (d). These components support the interactions in inspecting and assessing
a behavior trajectory.

Sample View. The former displays a contextual overview
showing the relationships among behaviors, while the latter
provides detailed information based on the user’s selection.
When a user selects a group of points, the visualization
system lets the user gain a better understanding of the
behaviors by providing sample videos and visualizations
of detailed MDP time-series data. This interactive visual
analysis process assumes that we can pre-train a model con-
taining an optimal policy for every possible user preference,
considering different objectives [5], [20], [21].

B. User Interface

Within the visualization system, users can explore the be-
havior space, examine groups of sampled behaviors, zoom in
on promising areas, and quickly find satisfactory candidates.
The approach significantly reduces the number of queries
required to find an optimal or satisfactory candidate. Its
method assumes that users possess at least basic analysis
skills that enable estimating the value of such groups and
making decisions at a relevant rational level. Our work
demonstrated that the proposed system faithfully follows this
assumption. Below, we describe the visualization system’s
interface (Fig. 2), presenting the design details of each view.

1) Embedding View: The Embedding View is designed to
give an overview of all possible behaviors generated from the
candidate policies. These possible policies are the results of
optimizing different instances of reward terms sampled from
the reward distribution. To measure the similarity between
behaviors, we apply the dynamic time-warping (DTW) algo-
rithm [22] to the observations over time. The DTW algorithm
can compute the temporal alignment between two time-series
data and derive a comprehensive distance. From this distance,
the behavior data can be captured in a two-dimensional
scatterplot (see Fig. 2, a) through a dimensionality-reduction
algorithm. Our implementation uses t-SNE [23] for this
purpose. Each point plotted represents a specific behavior
with corresponding reward weights. Close points, denoting
similar behaviors, are more likely to be located in a cluster.
Note that while t-SNE with DTW is used here, other methods
that work on the data can also be used.

The scatterplot permits the user to perform selection
through brushing, thus allowing users to steer the exploration

in the behavior space. Upon brushing of a set of points in
the scatterplot, the corresponding reward-weight distribution
gets visualized for the parallel coordinates, as shown in the
figure’s pane b. The range for each coordinate is 0 to 1. For
example, the selected behaviors in this pane were trained
from a reward with a small w1 and a large w4. w2 and
w3 have a negative correlation relationship. This distribution
information can be used to re-train the policy in the outer
loop further.

2) Sample View: The Sample View is a feature that
provides detailed analysis of selected behaviors. It generates
videos sampled from the chosen behaviors as previews to
help users understand them better (illustrated in Fig. 2, c).
Additionally, it presents all the MDP time-series data for the
behaviors as band time-series charts (as pane d shows). A
narrow band indicates that the selected behaviors are highly
similar and that the sample videos might represent the cluster
well. In other cases, further queries within the cluster may be
necessary. Using the time-series chart, users can apply their
expertise to analyze the behaviors more efficiently without
watching all the videos. They can observe trend patterns or
specific values for the timesteps and even add their own
filters for analysis.

If only one behavior is selected, the band time-series charts
appear as line charts (see Fig. 3). For more detailed analysis,
users can brush a range of timesteps to extract keyframes on
the basis of zero-crossing points [24]. The keyframe snapshot
is then shown as a sequence of images. By selecting each
keyframe, users can visualize the instant action and reward
with bar charts for easy analysis.

C. Preference Elicitation via Visualization System

With our visualization system, we elicit user preferences
by obtaining feedback to infer the hidden user utility. Algo-
rithm 1 expresses the workflow, which follows three main
steps: 1) In a pre-training phase (lines 1–2), a meta-policy
is trained with random samples from the reward distribution,
roughly in the manner of prior pertinent approaches [5], [25],
[26]. The trained policy functions as an optimal policy for
exploration of the reward space, in that its behavior is con-
ditioned on the reward weights. 2) In preference elicitation
(lines 3–11), the behavior data are generated from the trained

Fig. 4: The visualization system enables interactive visual analytics from a high-level overview to an in-depth analysis. The
user begins by examining the larger cluster on the left (a1). The cluster assigns more weight to w3 and w4 (a2). One sample
behavior simply keeps the body straight and falling down (a3). The observation features are in narrow bands over time (a4),
reflecting very similar behaviors in the cluster. In the second cluster (b1), greater weight gets assigned to w1 and w2 (b2).
The sample video, presenting attempts to do the splits (b3), indicates that this cluster holds greater promise. Further analysis
is required, since the corresponding MDP time-series data show more variety (b4).

policy (lines 4–7) and embedded in a low-dimensionality
space for visualization (line 8), and our system is used to
tune the weights through visual analysis (line 9). Finally, 3)
in a fine-tuning phase (line 12), an optimal policy can be
found via fine-tuning of the policy once the reward weights
have been tuned to the user-preferred combination.

Algorithm 1 Preference Elicitation Workflow

Require: The distribution over the reward preference p(w)
1: Randomly initialize the meta-policy πθ

2: Pre-train meta-policy πθ with p(w)
3: while optimal w∗ has not been found do
4: for each i do
5: Sample wi ∼ p(w)
6: Generate trajectory τi following πθ(a|s,wi)
7: end for
8: Embed [τ0, . . . , τn] based on the trajectory similarity
9: Interactively analyze (w0, τ0), . . . , (wn, τn)

10: Update p(w)
11: end while
12: Finetune πθ to π∗

θ with the optimal w∗

D. Usage Example

The visualization system can support the environments
associated with the Gym API. Let us demonstrate its use in
reward tuning by considering an example environment with
Wallker2D implemented with Gymnasium 1. The models are
trained using the Soft Actor-Critic method [27]. We take the

1https://gymnasium.farama.org/environments/mujoco/walker2d

task of doing the splits as implemented in this environment.
The reward function is defined as the linear combination of
reward terms r = w1 ·r1+w2 ·r2+w3 ·r3+w4 ·r4, where r1
is the angle between the thighs (r1 = |obs[5]−obs[2]|), r2 is
the proximity of the ground (1−(obs[0]−0.4 ·sin(obs[1]))),
r3 is the legs’ straightness (r3 = −|obs[3]|/2 − |obs[6]|/2),
and r4 is the straightness of the torso (r4 = −|obs[1]|). The
goal is to arrive at the correct weight vector (w1, w2, w3, w4).

Given the behavior data, the Embedding View displays
two distinct clusters of behaviors. The user begins with
these, examining the larger cluster (on the left) by brushing
certain points and clicking the analysis button (a1), which
triggers depicting the reward-weights distribution (a2) as
the information to inform analysis for the reward function
and the corresponding Sample View. Consulting the Sample
View, the user is presented with behavior videos (a3) as
the visual information for the policy, along with the time
series of MDP features from one episode associated with
the behaviors (a4). In this case, the video shows that the
behaviors within the cluster considered do not fulfil the
task’s remit: the body remains straight. These sampled videos
are deemed representative of the cluster because nearly all
observation features in the MDP series are in narrow bands
over time (Fig. 4-a4). The reason for the failures in this
cluster might be favoring w3 and w4 excessively in the
weighting (see Fig. 4-a2), whereby these policies put too
much effort into maintaining the straightness of the body.
In light of this analysis, the user moves on to the second
cluster, on the right (in-b1), where the distribution of reward
weights shows its favor on w1 and w2 (b2). The sample
videos show attempts to do the split (b3). The MDP time

Fig. 5: Two common mistakes have been identified: the agent
sometimes falls over at the end, with the torso ending up on
the ground (a), and in some cases the agent fails to keep its
legs straight (b). These two classes of erroneous behavior can
be identified by the z-coordinate of the torso being close to 0
while the angle of the left and right leg joints deviates from
0, as is visible from the patterns in the area marked in red
(c). This analysis lets the user filter out undesired behaviors
quickly without needing a large number of videos.

series (b4) shows more variety, requiring further analysis.
How visual analytics information aids in decision-making

is clear from Fig. 5, depicting the user inspecting the second
cluster in the Embedding View. Here, the videos show better
attempts at the splits, though small mistakes in the behavior
still lead to failure. The user identifies a common mistake
evident in the videos: the agent tips over, and its torso ends
up on the ground (see Fig. 5-a). When the agent falls, the
ob0 value (the z-coordinate of the torso) approaches 0 (as the
plots in pane c show), because the torso is now at ground
level. Therefore, to eliminate this unsatisfactory behavior
from consideration without tedious comparison of videos,
the user could filter out behaviors with ob0 values close to
0 at the end of the trajectory. The user continues to explore
the Embedding View. For example, doing the splits properly
involves keeping both legs straight at the end (see Fig. 5-b).
Accordingly, ob3 (the relevant angle for the right leg) and
ob6 (the corresponding one for the left) should be close to
0 when the trajectories end, so the user includes these two
conditions for tuning the weights.

After these queries, the user narrows the search to a small
space and inspects the behavior at each of the final few points
individually. After considering each video and analyzing
the MDP series data, the user can determine the optimal
parameters. The final tuned reward, r = 0.2 · r1 + 0.4 · r2 +
0.3 · r3 + 0.2 · r4, can successfully align the agent to do the
splits. With the reward, the model can be further fine-tuned.

IV. SIMULATION-BASED EVALUATION

This section presents results from a simulation study. It
shows the effectiveness of analyzing groups of sampled
behaviors through an embedded view, demonstrating that
it requires less user effort. In general, we describe the
environment setup, then introduce the simulated users, and
finally look at the analysis results.

A. Environment Setup

In the setup we employed, we prepare the behavior
datasets by randomly generating 200 points in the embedding
space. For simplicity, we assume the embedding space is
the same as the embedding view in our system, which is
two-dimensional. Each point ci represents a behavior with a
feature vector ϕ(ci) based on the x–y coordinates, since we
are assuming that the relationship of the behaviors is captured
well through the embedding approach. The ground-truth
candidate (denoted as ct) is chosen randomly from among the
points. We use utility measurement to evaluate performance
on the basis of the similarity between the ground-truth
candidate and the inferred candidate (denoted as cj) within
a given space. This value is defined as 1− ||(ϕ(ci), ϕ(ct)||2,
where the latter term represents the normalized distance
between the two candidates. In this environment setting, the
goal is to find the ground-truth candidate through queries,
and we find the number of queries needed to identify it.

B. Simulated Users

We built simulated users by modeling how they perform
queries and how they show their preferences.

1) User Query: We defined four types of user queries –
three using baseline techniques and our approach:

• Pairwise comparisons [28]: The user chooses a winner
from between two items, which is compared to a new
item with the next query.

• Ranking [28]: The user starts by ranking two items;
then, each subsequent round adds one more item, which
has to be sorted into the rank order. The information is
of higher quality with the ranking approach as compared
to pairwise comparison when the quantity of queries is
the same.

• Clustering [28]: Instead of performing a full ranking,
the user selects the best item and groups the remaining
ones into clusters. Items with similar utility values are
placed in the same cluster.

• Our approach: User queries with our approach proceed
in a top-down hierarchical fashion from high-level to
low-level clusters (see Subsec. III-D). For simplicity,
we assume that each high-level cluster contains two sub-
clusters (in practice, one can use an arbitrary number of
sub-clusters). Given two clusters, the user measures the
average utility in each and selects a winner cluster for
further inspection. The process iterates until reaching
the final behavior remaining.

2) User Preference: We modeled the user’s preferences
via the noisy model and Boltzmann rational model [15].

• Noisy model: We measured the performance of the
queries under the noisy-user model defined in Eq. 2.
It uses Gaussian processes (GPs) for preference elicita-
tion [28].

• Boltzmann rational model: By assuming that the choice
of groups can influence the human designer’s capability
level and presuming that users are Boltzmann rational,
we defined the user model as a Boltzmann rational agent
(see Eq. 3) that reflects selection of the best cluster ci
alongside the other clusters in queries:

p(ci|w, δ) =
exp(βR̂(ci|w))∑k
j exp(βR̂(cj |w))

(4)

C. Results

For each setting, we used 50 iterations with 50 queries.
Each iteration has a dataset with 200 randomly generated
data points. Our approach outperforms all baselines with
both user models. For the noisy model, we can see from
Figure 6 that our method is robust to varying levels of noise
– the user model considers the average performance of the
clusters since all feedback consists of noisy estimates up
to a constant noise level. Our approach uses, on average,
15 queries to reach an average utility of 0.954, which is
higher than that of pairwise comparison (0.929), clustering
(0.934), and ranking (0.932). For the Boltzmann rational
model, we measured the mean utility and standard error for
queries under several levels of rationality. The results (in
Fig. 7) attest that our method reaches greater utility with
fewer queries when compared to other query types. As is
visible from the graphs, our method converges more quickly
than other queries; i.e., it prevents unnecessary evaluation
of most of the data points available. Our approach uses 15
queries, on average, to reach an average utility of 0.972,
better than pairwise comparison’s 0.904, clustering’s 0.919,
and ranking’s 0.914.

V. CONCLUSION AND DISCUSSION

The novel visual analytics approach presented here enables
users to interactively search for desired reward parameters.
Our system allows users to control their insight and integrate
it into the preference-elicitation process. The simulation
study proves that our approach can outperform baseline
methods, requiring less user effort. The proposed system
demonstrates several advantages:
A1 It offers a more intuitive and efficient way to support

users’ decision-making process with a structured Em-
bedding View accompanied by analytics data.

A2 The system allows users to gain a deeper understanding
of the reward landscape and the link between the
policies’ behavior patterns and their associated reward
parameters.

A3 This lets users choose and inspect policies with complex
behaviors freely, in accordance with their preferences.

Fig. 6: Our approach outperforms baseline ones under the
noisy model with three noise levels: 0.01, 0.05, and 0.1. The
first row shows the GP without a prior, and the second shows
the one with a GP that has a linear prior.

Fig. 7: Our approach outperforms the baselines under the
Boltzmann rational model with three rationality levels: 0.1,
0.8, and 1. The two rows show the GP without a prior and
with a linear prior.

However, it also necessitates tradeoffs and shows limi-
tations relative to standard pairwise comparisons: 1) Our
approach assumes a user with some expertise in visual
analysis. For those who lack this skill, supplying a tutorial
and training is required, which might end up more time-
consuming than the standard pairwise comparison methods.
2) The simulated physical environment in RL is limited to vi-
sual rendering, which may not be applicable to all problems.
3) Currently, the system handles only reward functions that
are limited to linear expressions. This limits work with more
complex cases in real-world problems. Also, future efforts
could explore extending the visualization system to support
addressing problems in reinforcement-based learning from
human feedback without any reward functions [29].

ACKNOWLEDGMENT

This work was supported by the Research Council of
Finland (flagship program: Finnish Center for Artificial Intel-
ligence, FCAI, grants 328400, 345604, 341763; Human Au-
tomata, grant 328813;Subjective Functions, grant 357578).

REFERENCES

[1] S. Singh, R. L. Lewis, and A. G. Barto, “Where do rewards come
from?” in Proceedings of the Annual Conference of the Cognitive
Science Society. Cognitive Science Society, 2009, pp. 2601–2606.

[2] S. Mahadevan, “Average reward reinforcement learning: Foundations,
algorithms, and empirical results,” Machine Learning, vol. 22, no. 1,
pp. 159–195, 1996.

[3] W. B. Knox and P. Stone, “Learning non-myopically from human-
generated reward,” in Proceedings of the 2013 International Confer-
ence on Intelligent User Interfaces, 2013, pp. 191–202.

[4] D. Gupta, Y. Chandak, S. Jordan, P. S. Thomas, and B. C da Silva,
“Behavior alignment via reward function optimization,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[5] X. Chen, A. Ghadirzadeh, M. Björkman, and P. Jensfelt, “Meta-
learning for multi-objective reinforcement learning,” in Proceedings
2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 977–983.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, 2018.

[7] W. B. Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone, “Reward
(mis)design for autonomous driving,” Artificial Intelligence, vol. 316,
2023.

[8] D. Sadigh, A. Dragan, S. Sastry, and S. Seshia, Active preference-
based learning of reward functions, 2017.

[9] M. Palan, N. C. Landolfi, G. Shevchuk, and D. Sadigh, “Learning re-
ward functions by integrating human demonstrations and preferences,”
arXiv preprint arXiv:1906.08928, 2019.

[10] C. Wirth, R. Akrour, G. Neumann, and J. Fürnkranz, “A survey of
preference-based reinforcement learning methods,” Journal of Ma-
chine Learning Research, vol. 18, no. 136, 2017.

[11] A. Wilson, A. Fern, and P. Tadepalli, “A bayesian approach for policy
learning from trajectory preference queries,” Advances in Neural
Information Processing Systems, vol. 25, pp. 1142–1150, 2012.

[12] Y. Koyama, I. Sato, and M. Goto, “Sequential gallery for interactive
visual design optimization,” ACM Transactions on Graphics (TOG),
vol. 39, no. 4, 2020.

[13] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in VL ’96: Proceedings of the 1996 IEEE
Symposium on Visual Languages. IEEE, 1996, pp. 336–343.

[14] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “Modeling interaction via
the principle of maximum causal entropy,” in ICML ’10: Proceedings
of the 27th International Conference on Machine Learning. ACM,
2010, pp. 1255–1262.

[15] C. Laidlaw and A. Dragan, “The Boltzmann policy distribution:
Accounting for systematic suboptimality in human models,” in In-
ternational Conference on Learning Representations, 2021.

[16] R. Akrour, M. Schoenauer, and M. Sebag, “APRIL: Active preference-
learning based reinforcement learning,” in Machine Learning and
Knowledge Discovery in Databases. Springer, 2012, pp. 116–131.

[17] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning.” in ICML ’00: Proceedings of the Seventeenth International
Conference on Machine Learning, 2000, pp. 663–670.

[18] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in ICML ’04: Proceedings of the Twenty-First
International Conference on Machine Learning, 2004.

[19] J. Fürnkranz, E. Hüllermeier, W. Cheng, and S.-H. Park, “Preference-
based reinforcement learning: A formal framework and a policy
iteration algorithm,” Machine Learning, vol. 89, no. 1–2, pp. 123–
156, 2012.

[20] L. Barrett and S. Narayanan, “Learning all optimal policies with
multiple criteria,” in Proceedings of the 25th International Conference
on Machine Learning, 2008, pp. 41–47.

[21] D. J. Lizotte, M. Bowling, and S. A. Murphy, “Linear fitted-Q iteration
with multiple reward functions,” The Journal of Machine Learning
Research, vol. 13, no. 1, pp. 3253–3295, 2012.

[22] S. Salvador and P. Chan, “FastDTW: Toward accurate dynamic time
warping in linear time and space,” in KDD Workshop on Mining
Temporal and Sequential Data, vol. 6. Seattle, Washington, 2004,
pp. 70–80.

[23] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE.”
Journal of Machine Learning Research, vol. 9, no. 11, pp. 2579–2605,
2008.

[24] Y. Yang, L. Zeng, and H. Leung, “Keyframe extraction from motion
capture data for visualization,” in 2016 International Conference on
Virtual Reality and Visualization (ICVRV). IEEE, 2016, pp. 154–157.

[25] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman,
“Dynamics-aware unsupervised discovery of skills,” arXiv preprint
arXiv:1907.01657, 2019.

[26] A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and S. Levine, “Pre-
training for robots: Offline RL enables learning new tasks from a
handful of trials,” arXiv preprint arXiv:2210.05178, 2022.

[27] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proceedings of the 35th International Conference
on Machine Learning. PMLR, 2018, pp. 1861–1870.

[28] L. M. Zintgraf, D. M. Roijers, S. Linders, C. M. Jonker, and
A. Nowé, “Ordered preference elicitation strategies for supporting
multi-objective decision making,” arXiv preprint arXiv:1802.07606,
2018.

[29] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and
D. Amodei, “Deep reinforcement learning from human preferences,”
Advances in Neural Information Processing Systems, vol. 30, pp.
1133–1141, 2017.

